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Table 2 Level of significance, marker effect and location of associated alleles are revealed by association mapping

Genetic

No. of genotypes with

type of allele

Physical

distance
(cM)

Chromosome
number

Allelic effect

—7.371135503
—1.428738633
—13.75719344
—6.478449225

0.498701341

Allelic sizes (bp)

GLM P value R2
177:177

distance (Mb)

3.93

Trait Locus

FL

Year

0.1018875

0.0303325

9.7

-

BVWS00358

2013

73

150:150

16
73
76

177:177

0.1198053

0.0155809

BVWS00358

2012

150:150
278:278
329:329

0.155797

0.0118073

0.329

0.0

4

BVWS01708

FL

2012

9.653739726
0.11462888

76

278:278
329:329
175:175

0.2166411

3.06E-04

BVWS01708

2013

18
66

8.809532625
2.41806641

24.9 6.99 0.0290696 0.1067577

10

FW BVWS00711

2013

25

146:146
175:175

66
25

4.274701446

0.0857415

0.0545139

BVWS00711

FL

146:146
210:210
236:236

20
72

0.172952407

0.1123728

0.0189544

18.39

40.5

2

BVWS00681

RT

2013

FL, fruit length; FW] fruit width; RT, rind thickness.

Moreover, with each generation during the breeding pro-
cess, only a few seeds from the best plants formed the next
generation. This winnowing effect can exacerbate a genetic
bottleneck, and further reduce genetic diversity throughout
the genome (Doebley et al. 2006). The extent of this loss of
diversity depends on the initial population size during domes-
tication (Doebley et al. 2006). However, this loss in diversity
is not experienced equally by all genes in the genome (Gross
and Olsen 2010). For instance, generally genetic bottlenecks
will not influence the diversity levels of neutral genes that
are not linked to agronomic traits in domesticated organisms.
However, genes that influence important traits favored by
humans will experience a greater loss of diversity, because
plants carrying these alleles contribute the most next-gener-
ation progeny, as other alleles are eliminated from the popu-
lation (Glaszmann et al. 2010). Another important factor is
that balancing or diversifying selection can increase optimal
phenotypes. A non-shattering phenotype in grain crops is
an example of balancing selection for maintaining an ade-
quate balance between harvesting and threshing (Zhang et al.
2009). Alternatively, conscious selection or gene flow from
wild or weedy relatives can increase genetic diversity while
the cultivated genome is under a selective sweep (Gross and
Olsen 2010). Genomic scans for the signature of selection
offer a means of identifying new genes of agronomic impor-
tance, even when the gene function and the phenotype of
interest are yet unknown (Doebley et al. 20006).

Our current study generated genome-wide scans for
locating selective sweep and balancing selection, and it iden-
tified important genes corresponding to these regions. By
resequencing 20 watermelon accessions that belong to wu/-
garis, mucosospermus, and wild subsp. lanatus, Guo et al. (2013)
identified 108 regions (7.78 Mb in size) containing 741 candi-
date genes. The region contains gene categories for the rec-
ognition of pollen and for pollen—pistil interaction, a large
cluster of 12 tandemly arrayed S-locus protein kinase genes,
and genes involved in plant responses to abiotic and biotic
stresses (Guo et al. (2013). Furthermore, Guo et al. (2013)
identified genes related to several known selected traits
including carbohydrate metabolism, fruit flavor (terpene
metabolism), and seed oil content (fatty acid metabolism) in
the regions of selective sweep.

Guo et al. (2013) studied 11 accessions of sweet water-
melon to characterize selective sweep. Selective sweeps
characterized using too small of sample size can cause bias
because of narrow genetic diversity, limited population his-
tory, selection timing, phasing error, and false LD resolution
(Tang et al. 2007; Granka et al. 2012; Qanbari et al. 2012). We
used genome-wide microsatellites in 90 diverse sweet water-
melon accessions in our current study, in contrast to the 11
accessions used by Guo et al. (2013). Furthermore, micro-
satellite markers are more highly polymorphic than biallelic
SNPs. Therefore, microsatellites can resolve balancing selec-
tion more efficiently than SNPs, primarily because microsat-
ellites amplify more alleles in diverse populations. We used a
sliding window approach to analyze genome-wide population
differentiation and fixation indices, along with heterozygosity
levels estimated across the chromosomes. We corroborated
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several genomic regions under selective sweep previously
described by Guo et al. (2013). Vigouroux et al. (2002) iden-
tified 15 SSRs that exhibited evidence for selection in maize
using a similar research approach as ours, and concluded
that non-neutral SSRs are good candidates for agronomi-
cally important genes. Our study used microsatellite alleles
and entire world collections to characterize thirty genomic
regions under selective sweep. Because microsatellite alleles
are mutational hot spots, using them for characterizing
genomic regions undergoing selection may provide addi-
tional information, compared with characterizing genome-
wide selection using SNPs.

A major challenge remaining is how to distinguish true sig-
nals from those due to genetic drift caused by narrow genetic
diversity (Tang et al. 2007; Granka et al. 2012; Qanbari et al.
2012). A possible solution is to estimate selective sweeps by
analyzing diverse populations collected from various geo-
graphic areas with diverse marker sets, hypothesizing that
true signals generated by selection would overlap across the
populations (Qanbari et al. 2012). We are currently undertak-
ing this, along with the validation of results obtained from
larger populations of sweet watermelons.

It is still unclear whether crop plant recombination rates
are positively associated with genetic diversity, despite con-
siderable debate (Bauer et al. 2013). Bauer et al. (2013) char-
acterized the recombination rate across the maize genome as
highly variable. Recombination hot spots have been hypoth-
esized to positively associate with genetic diversity, at least
as demonstrated in human genetic diversity (Spencer et al.
2000). In this study, we noted that the recombination rate
varies among and within chromosomes. In LD blocks, the
recombination rate is quite low compared with the rest of the
chromosomes. Recombination rates observed in the current
research are comparable to those previously estimated (Ren
etal. 2012).

Individual marker allele frequencies are very critical in
association mapping studies. All the linked markers in our
current research have an allele frequency of 0.15 or more.
Out of 96 accessions a causative allele needs to be present in
at least 12 individuals or more to infer association. Our cut-
rent research identified important genes containing micro-
satellite motifs in UTR and promoter regions exhibiting
associations with fruit length. BVWS01708 and BVWS00358
both showed linkage to fruit length. BVWS01708 is located
near the promoter TATA box of a DTW domain-containing
protein. BVWS00358 is a GAGA type transcription factor
in the 5' UTR of a gene that expresses a C,H, Zinc finger
motif. Interestingly, these microsatellites containing GA and
TA type repeats are specific to GAGA and TATA motifs in
the watermelon genome. Furthermore, the typical American
ecotype is characterized by clongated fruit length (oval
shape), compared with the typical African and Asian ecotypes
(round shape), so these 2 microsatellites, BVWS00358 and
BVWS01708, might have important roles in ecotype dif-
ferentiation. None of the QTLs mapped in the current
study could be validated with the previously mapped QTLs
by Sandlin et al. (2012). This may be due to the mapping

Reddy et al. « A Genome-Wide Scan of Selective Sweeps

population used in Sandlin et al. (2012) research, which were
derived from wide crosses.

Analysis of sweet watermelon genome population
structure, recombination rate, and selective sweeps will be
immensely useful in the design of association mapping stud-
ies. The extensive resequencing of several sweet watermelon
accessions around the world, along with wild-type counter-
parts, facilitated by the rapid progress in sequencing and anal-
ysis tools currently underway, will further facilitate generating
genome scans for selective sweeps, and thereby, for mining
novel alleles to improve horticulturally important traits.

Supplementary Material

Supplementary material can be found at http://wwwjhered.

oxfordjournals.org/.
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